
1

INF 111 / CSE 121:
Software Tools and Methods

Lecture Notes for Fall Quarter, 2007
Michele Rousseau
Set 6

(Some slides adapted from Susan E. Sim)

Topic 6 2

Announcements

Reminder: Quiz on Monday
● Lectures & Readings

Dropping?
● Friday Deadline for Dropping

(the easy way)

Adding?
● I’ll sign add cards on Friday provided others have

dropped

Topic 6 3

Previous Lecture
Finished the Agile Process Model
Started on XP

2

Topic 6 4

Today’s Lecture
Process Modeling
● Extreme Programming continues…

No Silver Bullet

Topic 6 5

XP Lifecycle Model

Topic 6 6

5 Phases Of Development

Exploration
Planning
Iterations to Release
Productionizing
Maintenance
Death

3

Topic 6 7

14 Key Practices of XP

On-site customer
Metaphor

Customer Practices

Planning Game
Small releases
40-hour week
Open Workspace

Management
Practices

Simple Design
Test-driven development
Refactoring
Pair programming
Continuous integration
Collective code ownership
Coding standards
Just Rules

Programmer
Practices

Topic 6 8

Programmer Practices
Simple Design
● Simple solutions no complex or extra code
● Do the simplest thing that will get you thru milestone
● Eliminate duplication in the design
● Don't over engineer, solve problems only when they

occur

Test-driven development
● Unit test implemented before code and are run

continuously (White Box Testing)
◘ Write a simple, automated test before coding

● Customers write functional tests (Black box testing)

Communication Simplicity Feedback

Courage

Topic 6 9

Programmer Practices (2)
Refactoring
● Improving code without changing features

A change to the system that leaves its behavior
unchanged, but enhances some nonfunctional
quality-simplicity, flexibility, understandability,
performance.

● Automated tests catch any errors that are introduced
Pair Programming 2 people + 1 computer
● One codes, one thinks about the design and catches

errors
Continuous Integration
● Many times / day
● All tests must pass for changes to be accepted
Communication Simplicity Feedback

Courage

4

Topic 6 10

Programmer Practices (3)
Collective Ownership
● Any developer can change any code any time
● But, “you break it, you fix it”

Coding Standards
● Everyone codes to the same style standards
● Corollary to “collective code ownership”
● “No one can recognize who wrote what”

Just Rules
● Team defined – can change

◘ all must agree & impact assessed
Communication Simplicity Feedback

Courage

Topic 6 11

Pair Programming
Programming is not just “typing”, this is why pair

programming does not reduce productivity (Fowler)

Benefits:
● All design decisions involve at least two brains.
● At least two people are familiar with every part

of the system.
● There is less chance of both people neglecting

tests or other tasks.
●Changing pairs spreads knowledge throughout

the team.
●Code is always being reviewed by at least one

person.

Topic 6 12

Management Practices

Planning Game
● Dev estimates effort
● Cust decides what they want and when

Small Short Releases < 2-3 months
● Then less

40-hour work week
● No 2 overtime wks in a row

Open Workspace
● 1 Large Room Small Cubicles
● Pair Programmers in the Center

Communication Simplicity Feedback

Courage

5

Topic 6 13

Customer Practices
On-site customer
●Need customer/user around to answer

questions
● Builds a bond, working relationship

Metaphors
● “Shared Story” guides development
●Describes how system should work

Communication Simplicity Feedback

Courage

Topic 6 14

User Story / User Card

http://www.scissor.com/resources/teamroom/

Topic 6 15

The XP Team Room

6

Topic 6 16

XP Concepts

XP is a set of key practices that suggest a
software development process.
Key concept: Embrace change.
● Rather than avoid changes, try to reduce the cost

of making changes.
Key concept: Defer costs.
● Rather than face every problem up front, try to

start with a small subset and incrementally plan
and carry out improvements.

Topic 6 17

XP Proponents Responses to Criticisms
Just a fancy form of build-and-fix.
● False.
● XP is actually a disciplined software process.
● Has the some of the same challenges and adoption

problems as traditional phased processes.

Doesn’t work for large systems.
● False.
● Chrysler Comprehensive Compensation system was a

large system
● Other XP users include Google and John Deere

Doesn’t work for large teams.
● False.
● Large teams are normally broken up into sub-projects
● Same can be applied to large teams using XP

Topic 6 18

Doesn’t work for geographically distributed teams.
● False.
● Technology is both the cause and the solution
● Planning tools, Skype, IM, revision control

User stories are no substitute for requirements.
● True.
● User stories work, because they depend on the other practices

such as On-site Customer

Doesn’t work with safety-critical software.
● False.
● Same challenges apply here as with phased processes
● Can add checks and balances, documentation, and formal

design as needed

XP Proponents Resp. to Criticisms (2)

7

Topic 6 19

Doesn’t produce documentation.
● Maybe. XP only produces as much documentation as is

needed, when it is needed (simplicity).

It is wasteful, because you’re doing constantly
doing re-design.
● False.
● Planning everything up front is wasteful, because things are

going to change anyways.

Not suitable for all projects
● True.
● User functionality is simple, algorithms hard
● Example: scientific applications

XP Proponents Resp. to Criticisms (3)

Topic 6 20

Productivity Gains

For a Web Dev Project
● 66% increase in new lines of code

produced
● 302% inc in new methods developed
● 283% inc in # of new classes implemented

Maruer & Martel 2002b

Topic 6 21

Cons

Corp Culture must support XP
● Any resistance can lead to failure

Best for teams < 20
Best if teams are collocated
●On the same floor

Technology that does not support
“graceful change” may not be
suitable

8

Topic 6 22

More Reading if you are interested
Agile
● Abrahamsson, P, et al. (2002). Agile

software development methods: Review
and analysis. VTT Publications 478.

● http://www.vtt.fi/inf/pdf/publications/2002/P
478.pdf

XP
● Beck, K. (1999). Extreme programming

explained: Embrace change. Reading
Mass., Addison-Wesley

Topic 6 23

The Mythical Man-Month
Originally Published in 1975
● Fred Brooks
● Based on Experiences From OS/360 in

mid-60’s

So why should we care?
Some interesting Stats
● Amazon.com Sales Rank:

#3,201 in Books
#1 in Microprocessor Design
#3 in Systems Analysis & Design
#12 in Software Engineering

Topic 6 24

Who is Fred Brooks?

“Father of IBM OS/360”
1992 Computer Pioneer Award (IEEE)
1999 Turing award winner
2007 Harvard Centennial Medal
Founded UNC-Chapel Hill CS dept

9

Topic 6 25

No-Silver Bullet

“There is no single development, in either
technology or management technique, which
by itself promises even one order-of-
magnitude improvement within a decade in
productivity, in reliability, in simplicity”

Topic 6 26

Essence & Accident

Essential Tasks
● Specifications, design & testing of

conceptual constructs
Accidental (or incidental) Tasks
● Programming & Compiling

The essential tasks are the hard part.

Topic 6 27

Why is building s/w difficult?

“I believe that hard part of building software
to be the specification, design, and testing
of this conceptual construct, not the labor
of representing it and testing the fidelity of
the representation”

It is the nature of s/w – inherent in the
process
Conceptual errors are the problem

10

Topic 6 28

Complexity
Conformity
Changeability
Invisibility

Four Inherent Difficulties

Topic 6 29

Complexity
Very large # of states
Scaling is up is not a repetition of the
same elements in large sizes
Elements interact in a non-linear fashion

Complexity Communication
It is difficult to extend large programs
without creating side effects

Complexity makes management difficult
Personnel turnover can be a disaster

Topic 6 30

Some of Brooks Suggestions

IF an OTS fits – buy it
●Why re-invent the wheel

Requirements refinement and rapid
prototyping
●Many iterations between client and

designer
Grow – don’t build – software
●Develop incrementally

Train great designers

11

Topic 6 31

Is XP the Silver Bullet?
Requires:

Good Developers
…working well together
Sufficient Domain Knowledge
● Onsite Customer is knowledgeable

Sufficient Technical Expertise
● Knowledge of tools and methods

Good Communication Skills
Collocation
● How do you collocate 4000 programmers?

What if a method or tool is not a SB?

